- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,
(1)求证: AC1//平面CDB1;
(2)求二面角C1-AB-C的平面角的正切值.
(1)求证: AC1//平面CDB1;
(2)求二面角C1-AB-C的平面角的正切值.

如图,在三棱柱
中,已知
,
,
侧面
.
(Ⅰ)求直线
与底面
所成角正切值;
(Ⅱ)在棱
(不包含端点)上确定一点E的位置,
使得
(要求说明理由);
(Ⅲ)在(Ⅱ)的条件下,若
,求二面角
的大小.





(Ⅰ)求直线


(Ⅱ)在棱

使得

(Ⅲ)在(Ⅱ)的条件下,若



如图,几何体是圆柱的一部分,它是由矩形
(及其内部)以
边所在直线为旋转轴旋转
得到的,
是
的中点.
(
)设
是
上的一点,且
,求
的大小;
(
)当
时,求二面角
的大小.





(





(




已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.

(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.

(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.