- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四边形ABCD是矩形,
平面ABCD,其中
,
,若在线段PD上存在点E使得
,求线段AD的取值范围,并求当线段PD上有且只有一个点E使得
时,二面角
正切值的大小.







如图,矩形ABCD中,DC=
,AD=1,在DC上截取DE=1,将△ADE沿AE翻折到D1点,点D1在平面ABC上的射影落在AC上时,二面角D1—AE—B的平面角的余弦值是____________ .


如图,已知四棱锥P−ABCD,底面ABCD为菱形,AB=2,∠BAD=120°,PA⊥平面ABCD,M,N分别是BC,PC的中点.
(1)证明:AM⊥平面PAD;
(2)若H为PD上的动点,MH与平面PAD所成最大角的正切值为
,求二面角M−AN−C的余弦值.
(1)证明:AM⊥平面PAD;
(2)若H为PD上的动点,MH与平面PAD所成最大角的正切值为


如图所示,三棱柱ABC -A1B1C1中,已知AB⊥侧面BB1C1C,AB =BC =1,BB1=2,∠BCC1=60°.
(Ⅰ)求证:C1B⊥平面ABC ;
(Ⅱ)E是棱CC1所在直线上的一点,若二面角A-B1E-B的正弦值为
,求CE 的长. 
(Ⅰ)求证:C1B⊥平面ABC ;
(Ⅱ)E是棱CC1所在直线上的一点,若二面角A-B1E-B的正弦值为


四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,
E为PD的中点,PA=2AB=2.
(1)若F为PC的中点,求证PC⊥平面AEF;
(2)求二面角
的平面角的正弦值.
E为PD的中点,PA=2AB=2.
(1)若F为PC的中点,求证PC⊥平面AEF;
(2)求二面角

