- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 二面角的概念及辨析
- + 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
,点E是PD的中点.

(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E—AC—D的大小;
(Ⅲ)求点P到平面EAC的距离.


(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E—AC—D的大小;
(Ⅲ)求点P到平面EAC的距离.
在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,AB=PA=BC(a>0).
(1)当a=1时,求证:BD⊥PC;
(2)若BC边上有且只有一个点Q,使得PQ⊥QD,求此时二面角A-PD-Q的余弦值.
如图所示,在三棱锥S-ABC中,△SBC,△ABC都是等边三角形,且BC=1,SA=
,则二面角S-BC-A的大小为________.


已知在三棱锥P﹣ABC中,PA⊥面ABC,AC⊥BC,且PA=AC=BC=1,点E是PC的中点,作EF⊥PB交PB于点

A. (Ⅰ)求证:PB⊥平面AEF; (Ⅱ)求二面角A﹣PB﹣C的大小. |

如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角B´-AD-C,此时∠B´AC=60°,那么这个二面角大小是( )


A.90° | B.60° |
C.45° | D.30° |