- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,直二面角D−AB−E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B−AC−E的大小;
(Ⅲ)求点D到平面ACE的距离.

(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B−AC−E的大小;
(Ⅲ)求点D到平面ACE的距离.
(本题满分15分)如图,三棱锥P-ABC中,E,D分别是棱BC,AC的中点,PB=PC=AB=4,AC=8,BC=
,PA=
.

(Ⅰ)求证:BC⊥平面PED;
(Ⅱ)求平面PED与平面PAB所成的锐二面角的余弦值.



(Ⅰ)求证:BC⊥平面PED;
(Ⅱ)求平面PED与平面PAB所成的锐二面角的余弦值.
已知
中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,

(1)求证: AD⊥面SBC;
(2)求二面角A-SB-C的大小.


(1)求证: AD⊥面SBC;
(2)求二面角A-SB-C的大小.
如图,在三棱柱ABC—A1B1C1中,
侧面BB1C1C,已知AB=BC=1,BB1=2,
,E为CC1的中点。

(1)求证:C1B⊥平面ABC;
(2)求二面角A—B1E—B的大小。



(1)求证:C1B⊥平面ABC;
(2)求二面角A—B1E—B的大小。