- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知三棱锥
中,
,如图.

(Ⅰ)请在答题卡第18题图中作平面
交
于
点,交
于
点,并且平面
(说明作法及理由);
(Ⅱ)在满足(Ⅰ)的前提下,又有
,求三棱锥
的体积.



(Ⅰ)请在答题卡第18题图中作平面






(Ⅱ)在满足(Ⅰ)的前提下,又有


如图,在四棱锥




(Ⅰ)求证:


(Ⅱ)已知







如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①
;
②∠BAC=60°;
③三棱锥D﹣ABC是正三棱锥;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正确结论的序号是 .(请把正确结论的序号都填上)

①

②∠BAC=60°;
③三棱锥D﹣ABC是正三棱锥;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正确结论的序号是 .(请把正确结论的序号都填上)

如图,在四棱锥
中,
是正方形,
平面
,
,
分别是
的中点.

(1)在线段
上确定一点
,使
平面
,并给出证明;
(2)证明平面
平面
,并求出
到平面
的距离.








(1)在线段




(2)证明平面




如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ADC=60°,侧面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,M为PB的中点.
(1)求证:PA⊥平面CDM.
(2)求二面角D-MC-B的余弦值.
在如图所示的几何体中,四边形
是菱形,
是矩形,平面
平面
,
,
,
,
为
的中点.

(1)求证:
;
(2)在线段
上是否存在点
,使二面角
的大小为
,若存在,求出
的值,若不存在,请说明理由.










(1)求证:

(2)在线段




