- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
,
,
,
,
分别为
,
边的中点,以
为折痕把
折起,使点
到达点
的位置,且
..

(Ⅰ)证明:
平面
;
(Ⅱ)设
为线段
上动点,求直线
与平面
所成角的正弦值的最大值.













(Ⅰ)证明:


(Ⅱ)设




如图,在四棱柱
中,侧棱
,
,
,
,点
为线段
上的点,且
.

(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)判断棱
上是否存在点
,使得直线
平面
,若存在,求线段
的长;若不存在,说明理由.









(1)求证:


(2)求二面角

(3)判断棱





如图1,在
中,
,
,
,
,
分别是
,
上的点,且
,
,将
沿
折起到
的位置,使
,如图2.

(1)求证:
平面
;
(2)线段
上是否存在一点
,使得平面
与平面
成
的角?若存在,求出
的值;若不存在,请说明理由.















(1)求证:


(2)线段





