- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
等边三角形
的边长为3,点
、
分别是边
、
上的点,且满足
(如图1).将
沿
折起到
的位置,使二面角
为直二面角,连结
、
(如图2).

(1)求证:
平面
;
(2)在线段
上是否存在点
,使直线
与平面
所成的角为
?若存在,求出线段
的长; 若不存在,请说明理由.













(1)求证:


(2)在线段






如图,在边长为
的菱形
中,
.点
,
分别在边
,
上,点
与点
,
不重合,
,
.沿
将
翻折到
的位置,使平面
平面
.

(1)求证:
平面
;
(2)当
与平面
所成的角为
时,求平面
与平面
所成锐二面角的余弦值.


















(1)求证:


(2)当





如图所示,在四棱锥
中,底面
是矩形,
平面
,
.过
的中点
作
于点
,连接
,
.

(Ⅰ)证明:
平面
;
(Ⅱ)若平面
与平面
所成的锐二面角的余弦值为
,求
的长.












(Ⅰ)证明:


(Ⅱ)若平面




如图,在三棱锥
中,
与
均为边长是2的等边三角形,平面
平面CBE,点O是BE的中点.

(1)求证:
;
(2)求直线AB与平面ACE所成角的正弦值.





(1)求证:

(2)求直线AB与平面ACE所成角的正弦值.
在正方体
中,
,
分别为
,
的中点

(1)求证:
面
;
(2)在棱
上是否存在一点
,使得
面
,若存在,试确定
的值,若不存在说明理由;
(3)在(2)的条件下,求面
与面
所成二面角的正弦值.






(1)求证:


(2)在棱





(3)在(2)的条件下,求面


四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,侧面ABE⊥底面BCDE,BC=2,CD=4.

(I)证明:AB⊥面BCDE;
(II)若AD=2
,求二面角C-AD-E的正弦值.

(I)证明:AB⊥面BCDE;
(II)若AD=2
