刷题首页
题库
高中数学
题干
如图,多面体
由正方体
和四棱锥
组成.正方体
棱长为2,四棱锥
侧棱长都相等,高为1.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-22 08:26:35
答案(点此获取答案解析)
同类题1
如图,在边长为
的菱形
中,
.点
,
分别在边
,
上,点
与点
,
不重合,
,
.沿
将
翻折到
的位置,使平面
平面
.
(1)求证:
平面
;
(2)当
与平面
所成的角为
时,求平面
与平面
所成锐二面角的余弦值.
同类题2
如图所示,在边长为12的正方形
ADD
1
A
1
中,点
B
,
C
在线段
AD
上,且
AB
=3,
BC
=4,作
BB
1
∥
AA
1
,分别交
A
1
D
1
,
AD
1
于点
B
1
,
P
,作
CC
1
∥
AA
1
,分别交
A
1
D
1
,
AD
1
于点
C
1
,
Q
,将该正方形沿
BB
1
,
CC
1
折叠,使得
DD
1
与
AA
1
重合,构成如图所示的三棱柱
ABC
﹣
A
1
B
1
C
1
.
(Ⅰ)求证:
AB
⊥平面
BCC
1
B
1
;
(II)求多面体
A
1
B
1
C
1
﹣A
PQ
的体积.
同类题3
如图,在正方体
中,
为棱
的中点.求证:
(1)
平面
;
(2)平面
平面
.
同类题4
如图,四棱锥
中,底面
是边长为2的正方形,
,且
,
为
中点.
(1)求证:
平面
;
(2)求几何体
的体积.
同类题5
如图,多面体
中,平面
平面
,且
,
,
,
为
的中点,且
,
,且
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求该多面体
的体积.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直