- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 异面直线所成的角的概念及辨析
- + 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求
的长;
(2)求cos<
>的值;
(3)求证:A1B⊥C1M.
(1)求

(2)求cos<

(3)求证:A1B⊥C1M.

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABC
A.![]() (1)证明:PA⊥BD; (2)若PD=AD,求二面角A-PB-C的余弦值。 |
如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB的中点,则下列推断不正确的是( )
A.BC⊥平面PAB |
B.AD⊥PC |
C.AD⊥平面PBC |
D.PB⊥平面ADC |
如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.

(1)证明:BD⊥EC1;
(2)如果AB=2,AE=
,OE⊥EC1,求AA1的长.

(1)证明:BD⊥EC1;
(2)如果AB=2,AE=
