三棱锥中,是斜边的等腰直角三角形,则以下结论中:

①异面直线所成的角为90°;②直线平面
③平面平面;④点到平面的距离是.
其中正确的个数是(   )
A.1B.2C.3D.4
当前题号:1 | 题型:单选题 | 难度:0.99
在三棱锥中,,且分别是棱的中点,下面四个结论:

平面
③三棱锥的体积的最大值为
一定不垂直.
其中所有正确命题的序号是(   )
A.①②③B.②③④C.①④D.①②④
当前题号:2 | 题型:单选题 | 难度:0.99
如图所示,已知ABCD是直角梯形,

(1)证明:
(2)若,求三棱锥的体积.
当前题号:3 | 题型:解答题 | 难度:0.99
如图1,在四边形中,中点,将沿折到的位置,连结,如图2.

(1)求证:
(2)若,求平面与平面所成锐二面角的大小.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,在正方体中,分别是为的中点,则下列判断错误的是(    )
A.垂直
B.垂直
C.平行
D.平行
当前题号:5 | 题型:单选题 | 难度:0.99

如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.

(Ⅰ)求证:DE∥平面PA
A.
(Ⅱ)求证:AB⊥PB;
(Ⅲ)若PC=BC,求二面角P—AB—C的大小.
当前题号:6 | 题型:解答题 | 难度:0.99
如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

(1)求侧面与底面所成的二面角的大小;
(2)若的中点,求异面直线所成角的正切值;
(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
如图,四面体中,的中点.

(1)证明:
(2)已知是边长为2正三角形.
(Ⅰ)若为棱的中点,求的大小;
(Ⅱ)若为线段上的点,且,求四面体的体积的最大值.
当前题号:8 | 题型:解答题 | 难度:0.99
如图所示,已知空间四边形的每条边和对角线长都等于1,点分别是的中点,计算:

(1)
(2)的长;
(3)异面直线所成角的余弦值.
当前题号:9 | 题型:解答题 | 难度:0.99
下列叙述中正确的是()
A.若为假,则一定是p假q真
B.命题“”的否定是“
C.若a,b,c∈R,则“”的充分不必要条件是“a>c”
D.是一平面,a,b是两条不同的直线,若,则a//b
当前题号:10 | 题型:单选题 | 难度:0.99