- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 异面直线所成的角的概念及辨析
- + 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=
a,

(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.


(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
如图,已知四棱锥
的底面的菱形,
,点E是BC边的中点,AC和DE交于点O,PO
;

(1)求证:
;
(2)
求二面角P-AD-C的大小。
(3)在(2)的条件下,求异面直线PB与DE所成角的余弦值。




(1)求证:

(2)

(3)在(2)的条件下,求异面直线PB与DE所成角的余弦值。
如图所示,在直三棱柱ABC-A1B1C1中, BC="AC" ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1 ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为 ( )


A.0 | B.1 | C.2 | D.3 |
在四棱锥
中,底面
为菱形,侧面
为等边三角形,且侧面
底面
,
,
分别为
,
的中点.
(Ⅰ)求证:
.
(Ⅱ)求证:平面
平面
.
(Ⅲ)侧棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.









(Ⅰ)求证:

(Ⅱ)求证:平面


(Ⅲ)侧棱






如图,四棱锥
,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.

(1)在棱
上是否存在一点
,使得
,
,
,
四点共面?若存在,指出点
的位置并说明;若不存在,请说明理由;
(2)求点
平面
的距离.







(1)在棱







(2)求点


如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值.
