- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- + 数列的综合应用
- 数列-单利
- 数列-复利
- 数列-分期付款
- 数列-产值增长
- 数列-养老保险
- 数列-浓度匹配
- 数列-其他模型
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等差数列
中,
,公差
;数列
中,
为其前
项和,满足
.
(1)记
,求数列
的前
项和
;
(2)求证:数列
是等比数列;
(3)设数列
满足
数列
的前
项积,若数列
满足
,且
,求数列
的最大值.







(1)记




(2)求证:数列

(3)设数列








对于数列
,如果存在一个正整数
,使得对任意的
都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期.例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列.
(1)设数列
满足
,
,
(
、
不同时为
),且数列
是周期为
的周期数列,求常数
的值;
(2)设数列
的前
项和为
,且
.
①若
,试判断数列
是否为周期数列,并说明理由;
②若
,试判断数列
是否为周期数列,并说明理由;
(3)设数列
满足
,
,
,
,数列
的前
项和为
,试问是否存在
、
,使对任意的
都有
成立,若存在,求出
、
的取值范围;不存在, 说明理由.














(1)设数列










(2)设数列




①若


②若


(3)设数列














设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:
n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:

设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.








考查自然数


(1)若


(2)是否存在数列

(3)是否存在数列


(本题满分10分)已知数列
是公差大于
的等差数列,且满足
,
.
(Ⅰ) 求数列
的通项公式;
(Ⅱ)若数列
和数列
满足等式
(
),求数列
的前
项和
.




(Ⅰ) 求数列

(Ⅱ)若数列






