- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:若各项为正实数的数列
满足
,则称数列
为“算术平方根递推数列”.
已知数列
满足
且
点
在二次函数
的图象上.
(1)试判断数列
是否为算术平方根递推数列?若是,请说明你的理由;
(2)记
,求证:数列
是等比数列,并求出通项公式
;
(3)从数列
中依据某种顺序自左至右取出其中的项
,把这些项重新组成一个新数列
:
.若数列
是首项为
、公比为
的无穷等比数列,且数列
各项的和为
,求正整数
的值.



已知数列





(1)试判断数列


(2)记




(3)从数列










已知数列
满足:
,
(
),数列
满足:
,
(
),数列
的前
项和为
.
(1)求数列
的通项公式;
(2)求证:数列
是等比数列;
(3)求证:数列
是递增数列;若当且仅当
时,
取得最小值,求
的取值范围.











(1)求数列

(2)求证:数列

(3)求证:数列



