- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给定数列
,若满足
(
且
),对于任意的
,都有
,则称数列
为“指数型数列”.
(1)已知数列
的通项公式为
,试判断数列
是不是“指数型数列”;
(2)已知数列
满足
,
,证明数列
为等比数列,并判断数列
是否为“指数型数列”,若是给出证明,若不是说明理由;
(3)若数列
是“指数型数列”,且
,证明数列
中任意三项都不能构成等差数列.







(1)已知数列



(2)已知数列





(3)若数列



已知数列{an}满足a1=1,an+1=3an+4,n∈N*.
(1)证明:数列{an+2}是等比数列,并求数列{an}的通项公式;
(2)设bn=(a2n+2)log3(an+2),求数列{bn}的前n项和Tn.
(1)证明:数列{an+2}是等比数列,并求数列{an}的通项公式;
(2)设bn=(a2n+2)log3(an+2),求数列{bn}的前n项和Tn.