- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(题文)在数列
中,已知
,
.
(1)求数列
的通项公式;
(2)求满足
的正整数
的值;
(3)设数列
的前
项和为
,问是否存在正整数
,使得
?若存在,求出所有的正整数对
;若不存在,请说明理由.




(1)求数列

(2)求满足


(3)设数列






设数列
的前
项和为
,
,且点
在直线
上.
(1)求数列
的通项公式;
(2)是否存在实数
,使得数列
为等差数列?若存在,求出
的值;若不存在,则说明理由.






(1)求数列

(2)是否存在实数



设
为数列
的前
项和,对任意的
,都有
(
为常数,且
.
(1)求证:数列
是等比数列;
(2)设数列
的公比
,数列
满足
,求数列
的通项公式;
(3)在满足(2)的条件下,求数列
的前
项和
.







(1)求证:数列

(2)设数列





(3)在满足(2)的条件下,求数列



设数列
前
项和为
,且
.其中
为实常数,
且
.
(1)求证:
是等比数列;
(2)若数列
的公比满足
且
,求
的通项公式;
(3)若
时,设
,是否存在最大的正整数
,使得对任意
均有
成立,若存在求出
的值,若不存在请说明理由.







(1)求证:

(2)若数列




(3)若






已知各项均为正数的数列
中,
是数列
的前
项和,对任意
,有
(1)求常数
的值;
(2)求数列
的通项公式;
(3)设数列
的通项公式是
,前
项和为
,求证:对于任意的正整数
,总有
.






(1)求常数

(2)求数列

(3)设数列






设数列
的前
项和为
,
,且对任意正整数
,点
在直线
上.
(Ⅰ) 求数列
的通项公式;
(Ⅱ)是否存在实数
,使得数列
为等差数列?若存在,求出
的值;若不存在,则说明理由.







(Ⅰ) 求数列

(Ⅱ)是否存在实数


