- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
均为正整数,记
为矩阵
中第
行、第
列的元素,且
,
(其中
,
);给出结论:①
;②
;③
④若
为常数,则
.其中正确的个数是()














A.0个 | B.1个 | C.2个 | D.3个 |
已知
为正整数,数列
满足
,
,设数列
满足
.
(1)求证:数列
为等比数列;
(2)若数列
是等差数列,求实数
的值;
(3)若数列
是等差数列,前
项和为
,对任意的
,均存在
,使得
成立,求满足条件的所有整数
的值.






(1)求证:数列

(2)若数列


(3)若数列







已知
,
.
(1)若
是等差数列,且首项是
展开式的常数项的
,公差d为
展开式的各项系数和
①求
,
②找出
与
的关系,并说明理由.
(2)若
,且数列
满足
,求证:
是等比数列.


(1)若




①求

②找出


(2)若



