- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- + 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是由满足下列条件的函数
构成的集合:
①方程
有实数根;
②函数
的导数
满足
(I )若函数
为集合M中的任一元素,试证明万程
只有一个实根;
(II) 判断函
是否是集合
中的元素,并说明理由;
(III) “对于(II)中函数
定义域内的任一区间
,都存在
,使得
”,请利用函数
的图象说明这一结论.


①方程

②函数



(I )若函数


(II) 判断函


(III) “对于(II)中函数





设
,又
是一个常数,已知当
或
时,
只有一个实根;当
时,
有三个相异实根,现给出下列命题:
①A.
和
有一个相同的实根
②
和
有一个相同的实根
③
的任一实根大于
的任一实根
④
的任一实根小于
的任一实根, 其中错误的命题的个数是( )
A. 4







①A.


②


③


④


A. 4
A.3 | B.2 | C.1 |
设函数


(1)求

(2)试求b的值;
(3)若



设关于
的函数
,其中
为
上的常数,若函数
在
处取得极大值
(1)求实数
的值
(2)若函数
的图像与直线
有两个交点,求实数
的取值范围
(3)设函数
,若对任意的
,
恒成立,求实数
的取值范围.







(1)求实数

(2)若函数



(3)设函数



