- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知
.
(Ⅰ)若f(x)为区间(﹣1,3)上的“凸函数”,试确定实数m的值;
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,求b﹣a的最大值.

(Ⅰ)若f(x)为区间(﹣1,3)上的“凸函数”,试确定实数m的值;
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,求b﹣a的最大值.
已知函数f(x)=-




(Ⅰ)判断函数f(x)的零点的个数,并说明理由;
(Ⅱ)当x∈[-2,2]时,函数g(x)的图像总在直线y=a-

若不等式x2﹣ax+a>0在(1,+∞)上恒成立,则实数a的取值范围是( )
A.[0,4] | B.[4,+∞) | C.(﹣∞,4) | D.(﹣∞,4] |