- 集合与常用逻辑用语
- 函数与导数
- + 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)求证:对任意实数
,都有
;
(2)若
,是否存在整数
,使得在
上,恒有
成立?若存在,请求出
的最大值;若不存在,请说明理由.(
)

(1)求证:对任意实数


(2)若






已知f(x)=ex-alnx-a,其中常数a>0.
(1) 当a=e时,求函数f(x)的极值;
(2) 若函数y=f(x)有两个零点x1、x2(0<x1<x2),求证:
<x1<1<x2<a;
(3) 求证:e2x-2-ex-1lnx-x≥0.
(1) 当a=e时,求函数f(x)的极值;
(2) 若函数y=f(x)有两个零点x1、x2(0<x1<x2),求证:

(3) 求证:e2x-2-ex-1lnx-x≥0.