- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)
已知函数
(
).
(Ⅰ)求函数
的单调区间;
(Ⅱ)记函数
的图象为曲线
.设点
,
是曲线
上的不同两点.
如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行
于直线
,则称函数
存在“中值相依切线”.试问:函数
是否存在“中值相依切
线”,请说明理由.
已知函数


(Ⅰ)求函数

(Ⅱ)记函数





如果在曲线





于直线



线”,请说明理由.
已知函数
.(
为常数)
(1)当
时,①求
的单调增区间;②试比较
与
的大小;
(2)
,若对任意给定的
,在
上总存在两个不同的
,使得
成立,求
的取值范围.


(1)当




(2)





