- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点
所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.

(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.

已知函数
(1)若方程
内有两个不等的实根,求实数m的取值范围;(e为自然对数的底数)
(2)如果函数
的图象与x轴交于两点
、
且
.求证:
(其中正常数
).

(1)若方程

(2)如果函数






(2013•天津)已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有
.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有

已知函数
(
) =
,g (
)=
+
.
(1)求函数h (
)=
(
)-g (
)的零点个数,并说明理由;
(2)设数列
满足
,
,证明:存在常数M,使得对于任意的
,都有
≤
.






(1)求函数h (




(2)设数列






(2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.
2011•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0
,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=()

A.5太贝克 | B.75In2太贝克 | C.150In2太贝克 | D.150太贝克 |