- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,
是函数
图象上不同于
的一点.有如下结论:
①存在点
使得
是等腰三角形;
②存在点
使得
是锐角三角形;
③存在点
使得
是直角三角形.
其中,正确的结论的个数为( )




①存在点


②存在点


③存在点


其中,正确的结论的个数为( )
A.0 | B.1 | C.2 | D.3 |
已知函数
在[1,+∞)上为增函数,且
,
,
∈R.
(1)求θ的值;
(2)若
在[1,+∞)上为单调函数,求m的取值范围;
(3)设
,若在[1,e]上至少存在一个
,使得
成立,
求
的取值范围.




(1)求θ的值;
(2)若

(3)设



求

定义在
上的函数
同时满足以下条件:
①
在(0,1)上是减函数,在(1,+∞)上是增函数;
②
是偶函数;
③
在x=0处的切线与直线
y=x+2垂直.
(1)求函数
=
的解析式;
(2)设g(x)=
,若存在实数x∈[1,e],使
<
,求实数m的取值范围..


①

②

③


(1)求函数


(2)设g(x)=



已知函数
在
处存在极值.
(1)求实数
的值;
(2)函数
的图像上存在两点A,B使得
是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在
轴上,求实数
的取值范围;
(3)当
时,讨论关于
的方程
的实根个数.


(1)求实数

(2)函数




(3)当


