- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)已知函数
(1)当
时, 证明: 不等式
恒成立;
(2)若数列
满足
,证明数列
是等比数列,并求出数列
、
的通项公式;
(3)在(2)的条件下,若
,证明:
.

(1)当


(2)若数列





(3)在(2)的条件下,若


定义在定义域
内的函数
,若对任意的
都有
,则称函数
为“妈祖函数”,否则称“非妈祖函数”.试问函数
,(
)是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.







已知函数
在(-∞,0)上是减函数,在(0,1)上是增函数,函数
在R上有三个零点,且1是其中一个零点.
(Ⅰ)求
的值;(Ⅱ)求
的取值范围;
(Ⅲ)设
,且
的解集为(-∞,1),求实数
的取值范围.


(Ⅰ)求


(Ⅲ)设


