- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)
已知
,函数
.
(1)若函数
在区间
内是减函数,求实数
的取值范围;
(2)求函数
在区间
上的最小值
;
(3)对(2)中的
,若关于
的方程
有两个不相等的实数解,求实数
的取值范围.
已知


(1)若函数



(2)求函数



(3)对(2)中的




已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数, e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;
(2)若存在x使不等式
>
成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
(1)求常数a的值;
(2)若存在x使不等式


(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
已知函数

(1)当

(2)若

(3)若

设函数
.
(1)若
是函数
的一个极值点,试求出
关于
的关系式(用
表示
),并确定
的单调区间;
(2)在(1)的条件下,设
,函数
.若存在
使得
成立,求
的取值范围.

(1)若







(2)在(1)的条件下,设





(本小题满分12分)已知函数
(1)设两曲线
与
有公共点,且在公共点处的切线相同,若
,试建立
关于
的函数关系式;
(2)在(1)的条件下求
的最大值;
(3)若
时,函数
在(0,4)上为单调函数,求
的取值范围。

(1)设两曲线





(2)在(1)的条件下求

(3)若



(本小题满分10分)已知函数
的图象过原点,且
在
,
处取得极值.
(Ⅰ)求函数
的单调区间及极值;
(Ⅱ)若函数
与
的图象有且仅有一个公共点,求实数
的取值范围.




(Ⅰ)求函数

(Ⅱ)若函数


