- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
, 已知函数
(Ⅰ) 证明
在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线
在点
处的切线相互平行, 且
证明
.


(Ⅰ) 证明

(Ⅱ) 设曲线




设函数
,
,其中
为实数.
(1)若
在
上是单调减函数,且
在
上有最小值,求
的取值范围;
(2)若
在
上是单调增函数,试求
的零点个数,并证明你的结论.



(1)若





(2)若



已知函数
图像上点
处的切线与直线
平行(其中
),
(I)求函数
的解析式;
(II)求函数
上的最小值;
(III)对一切
恒成立,求实数
的取值范围。





(I)求函数

(II)求函数

(III)对一切

