- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f (x)=ax﹣ex(a∈R),g(x)=
.
(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)∃x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围.

(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)∃x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围.
函数
.
(1)求
的单调区间;
(2)在函数
的图象上取
两个不同的点,令直线AB的斜率
为k,则在函数的图象上是否存在点
,且
,使得
?若存
在,求A,B两点的坐标,若不存在,说明理由.

(1)求

(2)在函数


为k,则在函数的图象上是否存在点



在,求A,B两点的坐标,若不存在,说明理由.
已知f(x)=ax2(a∈R),g(x)=2lnx.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[
,e]上有两个不等解,求a的取值范围.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若方程f(x)=g(x)在区间[
