- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,二次函数
,关于
的不等式
的解集为
,其中
为非零常数,设
.
(1)求
的值;
(2)若存在一条与
轴垂直的直线和函数
的图象相切,且切点的横坐标
满足
, 求
实数的取值范围;
(3)当实数
取何值时,函数
存在极值?并求出相应的极值点.







(1)求

(2)若存在一条与





(3)当实数


已知
,函数
.
(1)求证:曲线
在点
处的切线过定点;
(2)若
是
在区间
上的极大值,但不是最大值,求实数
的取值范围;
(3)求证:对任意给定的正数
,总存在
,使得
在
上为单调函数.


(1)求证:曲线


(2)若




(3)求证:对任意给定的正数




已知函数
.
(1)当
时,求函数
的单调区间;
(2)当
时,若
对任意
恒成立,求实数
的取值范围;
(3)设函数
的图象在两点
处的切线分别为
,若
,且
,求实数
的最小值.

(1)当


(2)当




(3)设函数





