- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2013秋•郊区校级期末)已知函数f(x)=x2+xlnx.
(1)求f′(x);
(2)求函数f(x)图象上的点P(1,1)处的切线方程.
(1)求f′(x);
(2)求函数f(x)图象上的点P(1,1)处的切线方程.
(2009•天津)设函数f(x)=﹣
x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.

(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
设曲线
:
,
表示
的导函数。
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)求函数
的极值;
(Ⅲ)当
时,对于曲线
上的不同两点
,是否存在唯一
,使直线
的斜率等于
?并证明你的结论。




(Ⅰ)当


(Ⅱ)求函数

(Ⅲ)当






(2015•郑州三模)定义在(0,
)上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)tanx成立,则( )

A.![]() ![]() ![]() ![]() |
B.f(1)<2f(![]() |
C.![]() ![]() ![]() |
D.![]() ![]() ![]() |
(2011•威海模拟)已知函数
在点(﹣1,f(﹣1))的切线方程为x+y+3=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.
(2014•达州模拟)设函数f(x)=x2(ex﹣1)+ax3
(1)当
时,求f(x)的单调区间;
(2)若当x≥0时,f(x)≥0恒成立,求a的取值范围.
(1)当

(2)若当x≥0时,f(x)≥0恒成立,求a的取值范围.