- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,e为自然对数的底数.
(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0时,求证:
;
(Ⅲ)在区间(1,e)上
恒成立,求实数a的取值范围.

(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0时,求证:

(Ⅲ)在区间(1,e)上

已知函数
.
(1)若
,求函数
的单调区间;
(2)若关于x的不等式
在区间[1,2]上有解,求m的取值范围;
(3)设
是函数
的导函数,
是函数
的导函数,若函数
的零点为
,则点
恰好就是该函数
的对称中心.若m=1,试求
的值.

(1)若


(2)若关于x的不等式

(3)设








