- 集合与常用逻辑用语
- 函数与导数
- 定义法判断函数的单调性
- 求函数的单调区间
- + 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知f(x)是定义在R上的单调函数,对任意的实数m,n总有:f(m+n)=f(m)•f(n)且x>0时,0<f(x)<1.
(1)证明:f(0)=1且x<0时f(x)>1;
(2)当f(4)
,求使f(x2﹣1)•f(a﹣2x)
对任意实数x恒成立的参数a的取值范围.
(1)证明:f(0)=1且x<0时f(x)>1;
(2)当f(4)


已知函数f(x)=loga(1+x)﹣loga(1﹣x)(a>0且a≠1).
(1)讨论f(x)的奇偶性与单调性;
(2)若不等式|f(x)|<2的解集为
求
的值;
(3)设f(x)的反函数为f﹣1(x),若关于x的不等式f -1(x)<m(m∈R)有解,求m的取值范围.
(1)讨论f(x)的奇偶性与单调性;
(2)若不等式|f(x)|<2的解集为


(3)设f(x)的反函数为f﹣1(x),若关于x的不等式f -1(x)<m(m∈R)有解,求m的取值范围.
已知
是R上的单调函数,且
∈R,
恒成立,若
.
(1) 试判断函数
在R上的增减性,并说明理由;
(2) 解关于x的不等式
,其中m∈R且m > 0.




(1) 试判断函数

(2) 解关于x的不等式

已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=2,f(2)=10,
(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在R上是增函数;
(3)若关于x的不等式f(x2﹣4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范围.
(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在R上是增函数;
(3)若关于x的不等式f(x2﹣4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范围.
已知函数
为奇函数.
(I)证明:函数f(x)在区间(1,+∞)上是减函数;
(II)解关于x的不等式f(1+2x2)+f(﹣x2+2x﹣4)>0.

(I)证明:函数f(x)在区间(1,+∞)上是减函数;
(II)解关于x的不等式f(1+2x2)+f(﹣x2+2x﹣4)>0.