刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=2,f(2)=10,
(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在R上是增函数;
(3)若关于x的不等式f(x2﹣4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2012-01-03 05:38:20

答案(点此获取答案解析)

同类题1

已知函数f(x)=ln(1+x)﹣ln(1﹣x)+sinx.
(1)判断并证明函数(x)的奇偶性;
(2)解关于x的不等式:f(3x+2)+f(x)>0.

同类题2

已知函数(,且为自然对数的底数)
(1)判断函数的单调性并证明;
(2)判断函数的奇偶性并证明;
(3)是否存在实数,使不等式对一切都成立?若存在,求出的范围,若不存在说明理由.

同类题3

定义在上的奇函数有最小正周期4,且时,
(1)判断并证明在上的单调性,并求在上的解析式;
(2)当为何值时,关于的方程在上有实数解?

同类题4

下列函数是奇函数且在区间(0,+∞)上是减函数的是
A.B.C.D.

同类题5

下列函数中,在定义域内单调的是(   )
A.B.
C.D.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 函数单调性的应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)