- 集合与常用逻辑用语
- 函数与导数
- 定义法判断函数的单调性
- 求函数的单调区间
- + 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若函数
(e=2.71828
,是自然对数的底数)在
的定义域上单调递增,则称函数
具有M性质,下列函数中具有M性质的是( )




A.![]() | B.![]() | C.![]() | D.![]() |
设
为实数,函数
.
(1)求证:
不是
上的奇函数;
(2)若
是
上的单调函数,求实数
的值;
(3)若函数
在区间
上恰有3个不同的零点,求实数
的取值范围.


(1)求证:


(2)若



(3)若函数



定义在R上的偶函数f(x)的部分图象如图所示,则在(﹣2,0)上,下列函数中与f(x)的单调性不同的是( )


A.y=x2+1 | B.y=|x|+1 |
C.y![]() | D.y![]() |
已知函数f(x)在(-∞,+∞)上是增函数,a,b∈R,且a+b>0,则有( )
A.f(a)+f(b)>-f(a)-f(b) |
B.f(a)+f(b)<-f(a)-f(b) |
C.f(a)+f(b)>f(-a)+f(-b) |
D.f(a)+f(b)<f(-a)+f(-b) |