- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我们为了探究函数
的部分性质,先列表如下:

观察表中
值随
值变化的特点,完成以下的问题.
首先比较容易看得出来:此函数在区间
上是递减的;
(1)函数
在区间 上递增
当
时,
= .
(2)请你根据上面性质作出此函数的大概图像;
(3)试用函数单调性的定义证明:函数
在区间
上为减函数.

![]() | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
![]() | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.004 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |

观察表中


首先比较容易看得出来:此函数在区间

(1)函数

当


(2)请你根据上面性质作出此函数的大概图像;
(3)试用函数单调性的定义证明:函数

