- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我们把定义域为
且同时满足以下两个条件的函数
称为“
函数”:(1)对任意的
,总有
;(2)若
,
,则有
成立,下列判断正确的是( )








A.若![]() ![]() ![]() |
B.若![]() ![]() ![]() ![]() |
C.函数![]() ![]() ![]() |
D.函数![]() ![]() ![]() |
若函数
,则
( )


A.是奇函数,且在R上是增函数 | B.是偶函数,且在R上是增函数 |
C.是奇函数,且在R上是减函数 | D.是偶函数,且在R上是减函数 |