- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义域为R的函数
是奇函数。
(1)求a的值.
(2)判断函数f(x)在R上的单调性并证明你的结论.
(3)求函数f(x)在R上的值域.

(1)求a的值.
(2)判断函数f(x)在R上的单调性并证明你的结论.
(3)求函数f(x)在R上的值域.
若函数
具有下列性质:①定义域为
;②对于任意的
,都有
;③当
时,
,则称函数
为
的函数.若函数
为
的函数,则以下结论正确的是()










A.![]() | B.![]() |
C.![]() | D.![]() |
探究函数
,x∈(0,+∞)取最小值时x的值,列表如下:
请观察表中y值随x值变化的特点,完成以下的问题:
(1)函数
(x>0)在区间(0,2)上递减;函数
在区间________上递增.当x=_________时,
_______.
(2)证明:函数
(x>0)在区间(O,2)上递减.

x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
请观察表中y值随x值变化的特点,完成以下的问题:
(1)函数



(2)证明:函数

设定义在(0,+∞)上的函数f(x),对于任意正实数a、b,都有f(a•b)=f(a)+f(b)﹣1,f(2)=0,且当x>1 时,f(x)<1.
(1)求f(1)及
的值;
(2)求证:f(x)在(0,+∞)上是减函数.
(1)求f(1)及

(2)求证:f(x)在(0,+∞)上是减函数.