- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数f(x)=xk(k∈R,且为常数).
(Ⅰ)当k=3时,判断函数f(x)的奇偶性,并证明;
(Ⅱ)当k=1时,设函数g(x)=f(x)-
,利用函数的单调性的定义证明函数y=g(x)在x∈(0,+∞)为单调递增函数.
(Ⅰ)当k=3时,判断函数f(x)的奇偶性,并证明;
(Ⅱ)当k=1时,设函数g(x)=f(x)-

定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x<0时,f(x)>0恒成立,且nf(x)=f(nx).(n是一个给定的正整数).
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-2,5]上总有f(x)≤10成立,试确定f(1)应满足的条件;
(3)当a<0时,解关于x的不等式
.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)证明f(x)为减函数;若函数f(x)在[-2,5]上总有f(x)≤10成立,试确定f(1)应满足的条件;
(3)当a<0时,解关于x的不等式

设函数
(其中a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由.
(2)若
,试判断函数f(x)在区间[1,+∞)上的单调性,并用函数单调性定义给出证明.

(1)讨论函数f(x)的奇偶性,并说明理由.
(2)若

定义在
上的函数
满足以下三个条件:
①对于任意的
,都有
;
②函数
的图象关于
轴对称;
③对于任意的
,都有
则
、
、
从小到大的关系是( )


①对于任意的


②函数


③对于任意的


则



A.![]() | B.![]() |
C.![]() | D.![]() |
已知函数f(x)=1-
(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求a的值;
(2)证明:函数f(x)在定义域(-∞,+∞)内是增函数;
(3)当x∈(0,1]时,tf(x)≥2x-2恒成立,求实数t的取值范围.

(1)求a的值;
(2)证明:函数f(x)在定义域(-∞,+∞)内是增函数;
(3)当x∈(0,1]时,tf(x)≥2x-2恒成立,求实数t的取值范围.