- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- + 菱形的判定
- 添一个条件使已知四边形是菱形
- 证明已知四边形是菱形
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下列说法错误的是( )
A.平行四边形的内角和与外角和相等 |
B.一组邻边相等的平行四边形是菱形 |
C.对角线互相平分且相等的四边形是矩形 |
D.四条边都相等的四边形是正方形 |
如图,在平行四边形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使平行四边形ABCD成为菱形的是( )


A.AO=BO | B.AC=AD | C.AB=BC | D.OD=AC |
如图,在菱形
中,
,点
是
边的中点,点
是
边上一动点(不与点
重合),延长
交射线
于点
,连拉
.

(1)求证:四边形
是平行四边形。
(2)填空:
①当
的值为_______________时,四边形
是矩形;
②当
的值为_______________时,四边形
是菱形.












(1)求证:四边形

(2)填空:
①当


②当


将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是( )


A.矩形 | B.三角形 | C.梯形 | D.菱形 |
如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、E
A.![]() (1)用t的代数式表示:AE= ;DF= ; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由; (3)当t为何值时,△DEF为直角三角形?请说明理由. |
如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.

(1)请你判断所画四边形的性状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.

(1)请你判断所画四边形的性状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.