- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- + 菱形的判定
- 添一个条件使已知四边形是菱形
- 证明已知四边形是菱形
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC 中,点D 是边BC 上的点(与B、C 两点不重合),过点D作DE∥AC,DF∥AB,分别交AB、AC 于E、F 两点,下列说法正确的是( )


A.若AD 平分∠BAC,则四边形AEDF 是菱形 |
B.若BD=CD,则四边形AEDF 是菱形 |
C.若AD 垂直平分BC,则四边形AEDF 是矩形 |
D.若AD⊥BC,则四边形AEDF 是矩形 |
如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)

已知四边形ABCD是平行四边形,下列结论中不正确的有()
①当AB=BC时,它是菱形 ②当AC⊥BD时,它是菱形
③当∠ABC=90
时,它是矩形 ④当AC=BD时,它是正方形
①当AB=BC时,它是菱形 ②当AC⊥BD时,它是菱形
③当∠ABC=90

A.1组 | B.2组 | C.3组 | D.4组 |
点O是三角形ABC所在平面内一动点,连接OB、OC,并将AB、OB、OC、AC中点D、E、F、G,依次连接起来,设DEFG能构成四边形.
(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)当点O在△ABC外时,(1)的结论是否成立?(画出图形,指出结论,不需说明理由;)
(3)若四边形DEFG是菱形,则点O的位置应满足什么条件?试说明理由.
(1)如图,当点O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)当点O在△ABC外时,(1)的结论是否成立?(画出图形,指出结论,不需说明理由;)
(3)若四边形DEFG是菱形,则点O的位置应满足什么条件?试说明理由.

尺规作图(只保留作图痕迹,不要求写出作法).如图,已知BD是矩形ABCD的对角线,求作直线l,分别交AD、BC于 E、F,使得四边形BEDF为菱形.

如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接D

A. (1)证明:∠BAC=∠DA | B. (2)若∠BEC=∠ABE,试证明四边形ABCD是菱形. |

如图,四边形ABCD中,∠A=90°,AD∥BC,BE⊥CD于E交AD的延长线于F,DC=2AD,AB=BE.
(1)求证:AD=DE.
(2)求证:四边形BCFD是菱形.
(1)求证:AD=DE.
(2)求证:四边形BCFD是菱形.
