- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 集合
- 函数
- 三角函数
- 向量
- 数列
- 不等式
- 解析几何
- 立体几何
- 排列组合
- 概率
- 复数
- 平面几何
- 多项式
- 数学归纳法
- 初等数论
- 导数与极限
- 其他
设
为实数,
.证明:
(1)把
写成无穷乘积有唯一的表达式
其中,
为正整数,满足
;
(2)
是有理数,当且仅当它的无穷乘积具有下列性质:存在
,对所有的
,满足


(1)把




(2)




设有红、黑、白三种颜色的球各10个。现将它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色球都有,且甲、乙两个袋子中三种颜色球数之积相等。问:共有多少种放法?