- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 集合
- 函数
- 三角函数
- 向量
- 数列
- 不等式
- 解析几何
- 立体几何
- 排列组合
- 概率
- 复数
- 平面几何
- 多项式
- 数学归纳法
- 初等数论
- 导数与极限
- 其他
对
,取第1象限的点
,使
,
,
,
,
成等差数列,而
,
,
,
,
,
成等比数列.则各点
、
、
、
与射线
的关系为( ).




















A.各点均在射线![]() | B.各点均在射线![]() |
C.各点均在射线![]() | D.不能确定 |
奔驰定理:已知
是
内的一点,
,
,
的面积分别为
,
,
,则
.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz)的logo很相似,故形象地称其为“奔驰定理”若
是锐角
内的一点,
,
,
是
的三个内角,且点
满足
,则必有( )





















A.![]() |
B.![]() |
C.![]() |
D.![]() |