已知正三角形的边长是,若内任意一点,那么到三角形三边的距离之和是定值.这是平面几何中一个命题,其证明常采用“面积法”.如图,设到三边的距离分别是,则,为正三角形的高,即.运用类比法猜想,对于空间正四面体,存在什么类似结论,并用“体积法”证明.
当前题号:1 | 题型:解答题 | 难度:0.99
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,它体现了一种无限与有限的转化过程.比如在表达式中“…”即代表无限次重复,但原式却是个定值,它可以通过方程求得,类似上述过程,则( )
A.B.3C.6D.
当前题号:2 | 题型:单选题 | 难度:0.99
对于自然数方幂和),,求和方法如下:
23﹣13=3+3+1,
33﹣23=3×22+3×2+1,
……
(n+1)3n 3=3n2+3n+1,
将上面各式左右两边分别,就会有(n+1)3﹣13n,解得n(n+1)(2n+1),类比以上过程可以求得,A,B,C,D,E,FR且与n无关,则A+F的值为_______.
当前题号:3 | 题型:填空题 | 难度:0.99
请阅读下列材料:若两个正实数满足=1,求证:.证明:构造函数,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,即4,所以.
根据上述证明方法,若n个正实数…,an满足+…+=n时,你能得到的结论是(   )
A.
B.
C.
D.
当前题号:4 | 题型:单选题 | 难度:0.99
魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是一种无限与有限的转化过程,比如在正数中的“…”代表无限次重复,设,则可以利用方程求得x,类似地可得到正数
A.2B.3C.4D.6
当前题号:5 | 题型:单选题 | 难度:0.99
①已知是三角形一边的边长,是该边上的高,则三角形的面积是,如果把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,则①、②两个推理依次是
A.类比推理、归纳推理B.类比推理、演绎推理
C.归纳推理、类比推理D.归纳推理、演绎推理
当前题号:6 | 题型:单选题 | 难度:0.99
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式中“…”即代表无数次重复,但原式却是个定值,它可以通过方程求得.类比上述过程,则__________
当前题号:7 | 题型:填空题 | 难度:0.99
我国古代数学名著《九章算术》中割圆术记载:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在中,“…”即代表无限次重复,但原式却是个定值,这可以通过方程确定_______.
当前题号:8 | 题型:填空题 | 难度:0.99
在复平面内,复数对应向量为坐标原点),设,以射线为始边,为终边旋转的角为,则,法国数学家棣莫弗发现棣莫弗定理:,则 ,由棣莫弗定理导出了复数乘方公式:,则 (  )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式中“…”即代表无限次重复,但原式却是个定值,它可以通过方程,求得,类似上述过程,则=(  )
A.B.
C.D.
当前题号:10 | 题型:单选题 | 难度:0.99