刷题首页
题库
高中数学
题干
类比平面几何中的命题:“垂直于同一直线的两条直线平行”,在立体几何中,可以得到命题“__________”,这个类比命题的真假性是__________.
上一题
下一题
0.99难度 填空题 更新时间:2018-04-20 01:48:26
答案(点此获取答案解析)
同类题1
若三角形的周长为
、内切圆半径为
、面积为
,则有
.根据类比思想,若四面体的表面积为
、内切球半径为
、体积为
,则有
=________.
同类题2
给出下面四个推理:
①由“若
是实数,则
”推广到复数中,则有“若
是复数,则
”;
②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;
③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;
④由“直角坐标系中两点
、
的中点坐标为
”类比推出“极坐标系中两点
、
的中点坐标为
”.
其中,推理得到的结论是正确的个数有( )个
A.1
B.2
C.3
D.4
同类题3
在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c
2
=a
2
+b
2
。设想正方形换成正方体,把截线换成如下图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O
LMN,如果用S
1
,S
2
,S
3
表示三个侧面面积,S
4
表示截面面积,那么你类比得到的结论是
.
同类题4
在平面三角形中,若
的三边长为
,其内切圆半径为
,有结论:
的面积
,类比该结论,则在空间四面体
中,若四个面的面积分别为
,其内切球半径为
,则有相应结论:____
______.
同类题5
如图,在梯形ABCD中,AB∥DC,AB=a,CD=b(a>b).若EF∥AB,EF到CD与AB的距离之比为m:n,则可推算出:
,试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD中,延长梯形两腰AD、BC相交于O点,设△OAB、△OCD的面积分别为S
1
、S
2
,EF∥AB,且EF到CD与AB的距离之比为m:n,则△OEF的面积S
0
与S
1
、S
2
的关系是____.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比