刷题首页
题库
高中数学
题干
在平面几何中:已知
是△
内的任意一点,连结
并延长交对边于
,则
.这是一个真命题,其证明常采用“面积法”.拓展到空间,可以得出的真命题是:已知
是四面体
内的任意一点,连结
并延长交对面于
,则___________.
上一题
下一题
0.99难度 填空题 更新时间:2018-09-30 08:08:58
答案(点此获取答案解析)
同类题1
在
中,若
,则
的外接圆半径
,将此结论拓展到空间,可得出的正确结论是:在四面体
中,若
两两垂直,
,则四面体
的外接球半径
______________
.
同类题2
在
中,若
,
,
,斜边
上的高为
,则有结论
,运用类比方法,若三棱锥的三条侧棱两两个互相垂直且长度分别为
,
,
,三棱锥的直角顶点到底面的高为
,则有
_____
.
同类题3
我们知道:在长方形
中,如果设
,
,那么长方形
的外接圆的半径
满足:
.类比上述结论回答:在长方体
中,如果设
,
,
,那么长方体
的外接球的半径
满足的关系式是__________.
同类题4
已知“正三角形的内切圆与三边相切,切点是各边的中点”,类比之可以猜想:正四面体的内切球与各面相切,切点是( )
A.各面内某边的中点
B.各面内某条中线的中点
C.各面内某条高的三等分点
D.各面内某条角平分线的四等分点
同类题5
已知
中,
于
,三边分别是
,则有
;类比上述结论,写出下列条件下的结论:四面体
中,
、
、
、
的面积分别是
,二面角
、
、
的度数分别是
,则
__________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比