刷题首页
题库
高中数学
题干
在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的
.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-09-13 04:40:30
答案(点此获取答案解析)
同类题1
三角形面积为
,
,
,
为三角形三边长,
为三角形内切圆半径,利用类比推理,可以得出四面体的体积为( )
A.
B.
C.
(
为四面体的高)
D.
(其中
,
,
,
分别为四面体四个面的面积,
为四面体内切球的半径,设四面体的内切球的球心为
,则球心
到四个面的距离都是
)
同类题2
若三角形内切圆半径为r,三边长为a,b,c,则
,利用类比思想:若四面体内切球半径为R,四个面的面积为
,则四面体的体积
________.
同类题3
在平面几何中,有“若△
ABC
的三边长分别为
a
,
b
,
c
,内切圆半径为
r
,则三角形面积为
S
△
ABC
=
(
a
+
b
+
c
)
r
”,拓展到空间,类比上述结论,若四面体
A
BCD
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,内切球的半径为
R
,则四面体的体积为( )
A.
(
S
1
+
S
2
+
S
3
)
R
B.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
C.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
D.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
同类题4
我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若
a
,
b
,
c
为直角三角形的三边,其中
c
为斜边,则
a
2
+
b
2
=
c
2
,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体
O
-
ABC
中,∠
AOB
=∠
BOC
=∠
COA
=90°,
S
为顶点
O
所对面的面积,
S
1
,
S
2
,
S
3
分别为侧面△
OAB
,△
OAC
,△
OBC
的面积,则下列选项中对于
S
,
S
1
,
S
2
,
S
3
满足的关系描述正确的为( )
A.
S
2
=
S
+
S
+
S
B.
C.
S
=
S
1
+
S
2
+
S
3
D.
同类题5
三角形的面积为
,(
为三角形的边长,
为三角形的内切圆的半径)利用类比推理,可以得出四面体的体积为 ( )
A.
(
为底面边长)
B.
(
分别为四面体四个面的面积,
为四面体内切球的半径)
C.
(
为底面面积,
为四面体的高)
D.
(
为底面边长,
为四面体的高)
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比