刷题首页
题库
高中数学
题干
如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S
1
,S
2
,S
3
,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
上一题
下一题
0.99难度 解答题 更新时间:2016-12-21 03:24:23
答案(点此获取答案解析)
同类题1
在平面几何里有射影定理:“设
的两边
,
是
点在
边上的射影,则
”扩展到空间,若三棱锥
的三个侧面
、
、
两两互相垂直,点
是
在底面
上的射影,且
在
内,类比平面上三角形的射影定理,
、
、
三者的面积关系是
___________
.
同类题2
我们知道:在长方形
中,如果设
,
,那么长方形
的外接圆的半径
满足:
.类比上述结论回答:在长方体
中,如果设
,
,
,那么长方体
的外接球的半径
满足的关系式是__________.
同类题3
在平面几何中有如下结论:若正三角形ABC的内切圆面积为
,外接圆面积为
,则
.推广到空间几何体中可以得到类似结论:若正四面体ABCD的内切球体积为
,外接球体积为
,则
=___________.
同类题4
边长为
的等边三角形内任一点到三边距离之和为定值,则这个定值为
;推广到空间,棱长为
的正四面体内任一点到各面距离之和为___________________.
同类题5
在平面几何中,正三角形
的内切圆半径为
,外接圆半径为
,则
,推广到空间可以得到类似结论:已知正四面体
的内切球半径为
,外接球半径为
,则
__________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比
综合法证明