刷题首页
题库
高中数学
题干
在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c
2
=a
2
+b
2
.设想正方形换成正方体,把截线换成如下图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O
LMN,如果用S
1
,S
2
,S
3
表示三个侧面面积,S
4
表示截面面积,那么你类比得到的结论是
________
上一题
下一题
0.99难度 填空题 更新时间:2011-04-21 05:07:41
答案(点此获取答案解析)
同类题1
如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S
1
,S
2
,S
3
,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
同类题2
由直线与圆相切时,圆心与切点的连线与直线垂直,想到平面与球相切时,球心与切点的连线与平面垂直,用的是____推理
同类题3
已知“正三角形的内切圆与三边相切,切点是各边的中点”,类比之可以猜想:正四面体的内切球与各面相切,切点是( )
A.各面内某边的中点
B.各面内某条中线的中点
C.各面内某条高的三等分点
D.各面内某条角平分线的四等分点
同类题4
已知在正三角形
中,若
是
边的中点,
是三角形
的重心,则
.若把该结论推广到空间,则有:在棱长都相等的四面体
中,若三角形
的重心为
,四面体内部一点
到四面体各面的距离都相等,则
等于( )
A.4
B.3
C.2
D.1
同类题5
在平面几何中,有“若△
ABC
的三边长分别为
a
,
b
,
c
,内切圆半径为
r
,则三角形面积为
S
△
ABC
=
(
a
+
b
+
c
)
r
”,拓展到空间,类比上述结论,若四面体
A
BCD
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,内切球的半径为
R
,则四面体的体积为( )
A.
(
S
1
+
S
2
+
S
3
)
R
B.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
C.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
D.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比