刷题首页
题库
高中数学
题干
如图,在矩形
中,对角线
与两邻边所成的角分别为
,
,则
,则在长方体中,请给出类比猜想并证明.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-08 11:23:02
答案(点此获取答案解析)
同类题1
对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置?
A.正三角形的顶点
B.正三角形的中心
C.正三角形各边的中点
D.无法确定
同类题2
过正三角形的外接圆的圆心且平行于一边的直线分正三角形两部分的面积比为4∶5,类比此性质:过正四面体的外接球的球心且平行于一个面的平面分正四面体两部分的体积比为_______.
同类题3
由“以点
为圆心,
为半径的圆的方程为
”可以类比推出球的类似属性是____________.
同类题4
已知边长分别为
a
,
b
,
c
的三角形
ABC
面积为
S
,内切圆
O
的半径为
r
,连接
OA
,
OB
,
OC
,则三角形
OAB
,
OBC
,
OAC
的面积分别为
,由
得
,类比得四面体的体积为
V
,四个面的面积分别为
,
,
,
,则内切球的半径
______.
同类题5
设
的三边长分别为
,
,
,面积为
,内切圆半径为
,则
.类比这个结论可知:四面体
的四个面的面积分别为
,
,
,
,体积为
,内切球半径为
,则
( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比