刷题首页
题库
高中数学
题干
对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“
”.
上一题
下一题
0.99难度 填空题 更新时间:2012-06-18 10:18:08
答案(点此获取答案解析)
同类题1
通过圆与球的类比,由结论“半径为
r
的圆的内接四边形中,正方形的面积最大,最大值为2
r
2
”猜想关于球的相应结论为“半径为
R
的球的内接六面体中,______”.( )
A.长方体的体积最大,最大值为2
R
3
B.正方体的体积最大,最大值为3
R
3
C.长方体的体积最大,最大值为
D.正方体的体积最大,最大值为
同类题2
设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则
,类比这个结论可知:四面体S—ABC的四个面的面积分别为S
1
,S
2
,S
3
,S
4
,内切球半径为R,四面体S—ABC的体积为V,则R等于()
A.
B.
C.
D.
同类题3
半径为r的圆的面积s(r)=
,周长c(r)=2
,若将r看作
上的变量,则
=2
①式可用文字语言叙述为,圆的面积函数的导数等于圆的周长函数;对于半径为R的球,若将R看作
上的变量,请你写出类似于①的式子________________.②该式可用文字语言叙述为_____________________
同类题4
对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置?
A.正三角形的顶点
B.正三角形的中心
C.正三角形各边的中点
D.无法确定
同类题5
在平面几何中,三角形的面积等于其周长的一半与其内切圆半径之积,类比之,在立体几何中,三棱锥的体积等于______.(用文字表述)
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比