- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- + 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
,
,
.据此,可得正项等比数列
中,
( )





A.![]() | B.![]() | C.![]() | D.![]() |
设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论我们可以得到一个真命题为:设等比数列{bn}的前n项积为Tn,则______________成等比数列.
在等差数列{an}中,若公差为d,且a1=d,那么有am+an=am+n,类比上述性质,写出在等比数列{an}中类似的性质:_________________________.
已知数列
是正项等差数列,若
,则数列
也为等差数列.已知数列
是正项等比数列,类比上述结论可得




A.若![]() ![]() ![]() |
B.若![]() ![]() ![]() |
C.若![]() ![]() ![]() |
D.若![]() ![]() ![]() |
已知圆
的有
条弦,且任意两条弦都彼此相交,任意三条弦不共点,这
条弦将圆
分成了
个区域,(例如:如图所示,圆
的一条弦将圆
分成了2(即
)个区域,圆
的两条弦将圆
分成了4(即
)个区域,圆
的3条弦将圆
分成了7(即
)个区域),以此类推,那么
与
之间的递推式关系为:__________.

















