刷题首页
题库
高中数学
题干
求“方程
的解”有如下解题思路:设
,则
在
上单调递增,且
,所以原方程有唯一解
.类比上述解题思路,方程
的解集为______.
上一题
下一题
0.99难度 填空题 更新时间:2019-10-30 02:28:42
答案(点此获取答案解析)
同类题1
实数系一元二次方程
在复数集
内的根为
,
,则有
,所以
,
,由此推测以下结论:设实数系一元三次方程
在复数集
内的根为
,
,
,则
的值为( )
A.
B.
C.
D.
同类题2
在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在平面向量集
上也可以定义一个称“序”的关系,记为“
”.定义如下:对于任意两个向量
,“
”当且仅当“
”或“
”。按上述定义的关系“
”,给出如下四个命题:
①若
,则
;
②若
,则
;
③若
,则对于任意
;
④对于任意向量
,若
,则
。
其中真命题的序号为__________
同类题3
在复平面内,复数
对应向量
(
为坐标原点),设
,以射线
为始边,
为终边逆时针旋转的角为
,则
,法国数学家棣莫弗发现棣莫弗定理:
,
,则
,由棣莫弗定理导出了复数乘方公式:
,则
( )
A.
B.
C.
D.
同类题4
我国古代数学名著《九章算术》中,割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,如在
中,“…”即代表无限次重复,但原式却是个定值
x
,这可以通过方程
确定
x
的值,类似地
的值为( )
A.3
B.
C.6
D.
同类题5
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式
中“
”即代表无限次重复,但原式却是个定值,它可以通过方程
,求得
. 类似上述过程,则
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
解题方法的类比